
A connection between operator orderings and representations of the Lie algebra 

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2009 J. Phys. A: Math. Theor. 42 025202

(http://iopscience.iop.org/1751-8121/42/2/025202)

Download details:

IP Address: 171.66.16.154

The article was downloaded on 03/06/2010 at 07:45

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/42/2
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 42 (2009) 025202 (11pp) doi:10.1088/1751-8113/42/2/025202

A connection between operator orderings and
representations of the Lie algebra sl2

Ewa Gnatowska1 and Aleksander Strasburger2

1 Faculty of Mathematics and Natural Sciences, College of Sciences, Cardinal Stefan Wyszyński
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Abstract

We investigate special classes of polynomials in the quantum mechanical
position and momentum operators arising from various operator orderings, in
particular from the so-called μ-orderings generalizing well-known operator
orderings in quantum mechanics such as the Weyl ordering, the normal
ordering, etc. Viewing orderings as maps from the polynomial algebra on
the phase space to the Weyl algebra generated by the quantum mechanical
position and momentum operators we formulate conditions under which these
maps intertwine certain naturally defined actions of the Lie algebra sl2. These
conditions arise via certain regularities in coefficients defining the orderings
which can nicely be described in terms of some combinatorial objects called
here ‘inverted Pascal diagrams’. At the end we establish a connection between
radial elements in the Weyl algebra and certain polynomials of the ‘number
operator’ expressible in terms of the hypergeometric function. This is related
to another representation of sl2, realized in terms of difference operators.

PACS numbers: 03.65.Fd, 03.65.Ca, 02.20.Sv

1. Introduction

In this paper, we investigate possible solutions of the ordering problem under the condition
of covariance with respect to the action of sl2 Lie algebra derived from the metaplectic
representation. For the purpose of this introductory discussion we shall use the phrase
‘operator ordering’ as a description for some specified procedure, which assigns a well-defined
polynomial in the quantum mechanical operators p̂ and q̂ satisfying the relation [q̂, p̂] = i to
a polynomial in the classical phase-space variables p, q.

The interest in the ordering problem persists since the early days of the quantum
mechanics—see Wolf’s review [20] of the subject till the mid 1970s of the 20th century.
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Our interest in the problem was stimulated, on one hand, by the viewpoint of Howe, who
explores the role that dual pairs play in the structure of the Weyl algebra [12, 13], and on the
other hand by the discovery of various connections of this problem with the special functions
theory, among others done in the papers [2, 3, 5, 15, 16]. Verçin in a recent paper [18]
systematically investigated properties of a class of polynomials connected with a certain one-
parameter family of orderings, while independently although somewhat later [10] that class of
polynomials was investigated from the viewpoint exposed in the present paper by Gnatowska
in her Doctor’s Thesis at the University of Warsaw—cf also [11].

It has previously been observed by several authors, cf e.g. [5, 3, 18] that some prescriptions
for the operator orderings give rise to realizations of representations of the Lie algebra sl2

acting on the space of quantum mechanical operators depending polynomially on p̂ and q̂.
Here, we extend these investigations somewhat further by establishing a close relationship
between coefficients entering into a general ordering formula, cf (5.1) below, of a product
p̂nq̂m and the covariance properties with respect to the transferred action of the Lie algebra
sl2 on the polynomial algebra of classical phase-space variables p and q.

A brief description of results of the paper is in order here. After setting up preliminaries
in sections 2 and 3, which include a definition of an important family of μ-orderings, we
introduce in section 4 our main device for constructing orderings compatible with an action of
the Lie algebra sl2. It is a recursively defined two-parameter family of real numbers φn

k , which
we call here an ‘inverted Pascal diagram’ in view of the similarity of its construction with
this famous combinatorial object—cf lemma 1. The main result of the paper is theorem 1, in
which we show how sl2 actions on the Weyl algebra arise from ordering whose coefficients
come from an inverted Pascal diagram. Under this action the Weyl algebra decomposes into
a direct sum of invariant subspaces which carry the well-known ladder (or lowest weight)
representations of sl2, cf (5.7). Finally, it is shown how these representations can be built
from a certain family of hypergeometric-type polynomials considered in the papers mentioned
above.

2. Notation and preliminaries

We identify the Cartesian space R
2 with points denoted by (p, q) to the classical phase space

corresponding to one degree of freedom and let

P = P(R2) =
∞⊕

k=0
Pk(R2) (2.1)

be the polynomial algebra with complex coefficients in phase-space variables, where Pk =
Pk(R2) denotes the subspace of homogeneous polynomials of degree k ∈ Z+. (Throughout
the paper we adhere to the following convention: Z+ = {0, 1, 2, . . .} will denote the set of
nonnegative integers and N = {1, 2, . . .} that of natural numbers.) Below, we shall describe
a somewhat unusual realization of the Lie algebra sl2 defined in terms of the following
differential operators acting on the polynomial algebra P

RP(p, q) = pqP (p, q),

LP(p, q) = ∂2

∂p∂q
P (p, q),

EP(p, q) =
(

p
∂

∂p
+ q

∂

∂q
+ 1

)
P(p, q).

(2.2)

A routine calculation shows that these operators satisfy the commutation relations

[R,L] = −E, [E,R] = 2R, [E,L] = −2L (2.3)
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characterizing the Lie algebra sl2 in a Cartan basis, where E is a generator of the Cartan
subalgebra.

It may be checked that this action of sl2 on P leaves invariant each of the following
subspaces:

V0 = span{pkqk | k ∈ Z+},
Vn = span{pkqn+k | k ∈ Z+},
V−n = span{pn+kqk | k ∈ Z+},

(2.4)

where n ∈ N is arbitrary. Moreover it can be checked that with respect to E , the subspaces
V−n and Vn are the lowest weight modules for sl2 corresponding to the weight n + 1, while V0

corresponds to the lowest weight 1. Finally, there is a direct sum decomposition

P = P(R2) = V0 ⊕
∞⊕

n=1
(V−n ⊕ Vn), (2.5)

which is invariant under this action of sl2.
We denote by K = {P ∈ P | LP = 0} the space of ‘L-harmonic’ polynomials and by

Kk = K ∩ Pk its subspace of homogeneous degree k elements. Given P ∈ P it is clearly
sufficient and necessary for P to belong to K, that P is the sum of polynomials depending
separately on p and q, i.e. P = P1(p) + P2(q), and thus dimKk = 2 for k > 0 while K0 = C.
By a simple algebraic argument one easily arrives at the following decomposition,

Pk =
[k/2]∑
j=0

(pq)jKk−2j , (2.6)

where by [k/2] we denote the greatest integer not exceeding k/2. In other words, equation (2.6)
amounts to the statement that any homogeneous polynomial P of degree k can be expressed
in the form

P(p, q) = a0p
k + b0q

k + pq
(
a1p

k−2 + b1q
k−2)

+ · · · +

{
(pq)l(alp + blq), for k = 2l + 1,

(pq)l, for k = 2l,

with the uniquely determined coefficients aj , bj .

3. μ-orderings

By the Weyl algebra, hereafter denoted by W , we mean the associative algebra with unit over
complex numbers C generated by elements p̂ and q̂ satisfying the canonical commutation
relation

[q̂, p̂] = i. (3.1)

As usual, we identify complex numbers z ∈ C with the corresponding elements z · 1 of the
center of the Weyl algebra, where 1 is the unit of W .

As is well known, the commutation relation (3.1) underlies a more subtle algebraic
structure of the Weyl algebra than that of the polynomial algebra P . In place of the gradation
by means of the degree, embodied in equation (2.1) in the latter case, we have the filtration
W0 = C ⊂ W1 ⊂ · · · ⊂ Wk ⊂ · · · , with W = ⋃∞

0 Wk and Wk denoting the subspace of
W spanned by products of not more than k elements of {q̂, p̂}. This is the crux of the matter
and results in the well-known ambiguity of quantization procedures, and in particular in a
multitude of ordering maps.
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The elements p̂ and q̂ are identified as quantum mechanical operators of momentum and
position, respectively. Given w ∈ W , we shall denote by Lw : W �→ W, Rw : W �→ W
linear maps of W obtained by left or right multiplication with w, respectively. Following the
PhD Thesis of Gnatowska [10] we considered in our paper [11] one-parameter families
p̂(μ), Q̂(μ) of linear maps of the Weyl algebra W , with μ ∈ [0, 1], defined by

p̂(μ) : W �→ W, p̂(μ) = (1 − μ)Lp̂ + μRp̂,

Q̂(μ) : W �→ W, Q̂(μ) = μLq̂ + (1 − μ)Rq̂.

The crucial observation is that for any fixed μ the maps p̂(μ) and Q̂(μ) commute, and therefore
the effect of substituting p̂(μ), Q̂(μ) into any polynomial ω(q, p) ∈ P is unambiguous. This
observation justifies the following definition.

Definition 1. By the μ-ordering we shall mean the map Oμ : P(R2) �→ W obtained by setting
for any polynomial ω = ω(p, q) ∈ P

Oμ(ω) = ω(p̂(μ), Q̂(μ))1. (3.2)

Since the left and right multiplications mutually commute, the binomial formula applies and
it is easily seen that this definition produces the same formulae as those stated in the paper
[18] of Verçin

Oμ(pmqn) =
m∑

k=0

(
m

k

)
μk(1 − μ)m−kp̂m−kq̂np̂k, m, n ∈ Z+. (3.3)

In particular, for μ = 0, 1
2 , 1 this prescription coincides, respectively, with the classical cases

of the normal, Weyl and antinormal ordering considered in quantum mechanics, cf e.g. [20].
By way of example we write Oμ(ω) for a few polynomials of the lowest degree. For

quadratic polynomials the only interesting case is that of pq and from (3.3) it immediately
follows that

Oμ(pq) = (1 − μ)p̂q̂ + μq̂p̂.

This operator will play a significant role in the latter part of the paper, so it is reasonable to
introduce a special notation for it. We set

N = N(μ) = Oμ(pq) = (1 − μ)p̂q̂ + μq̂p̂. (3.4)

Note that this formula gives for μ = 1
2 the symmetrized product 1

2 (p̂q̂ + q̂p̂) which has played
an important role in the previouos works [2, 5, 15, 16].

For the elements of the third degree (3.3) gives (again only nontrivial cases are listed)

Oμ(p2q) = (1 − μ)2p̂2q̂ + 2μ(1 − μ)p̂q̂p̂ + μ2q̂p̂2,

Oμ(pq2) = (1 − μ)p̂q̂2 + μq̂2p̂.

For the classical cases of μ = 0, 1
2 , 1 we get

Classical ordering of elements of degree 3

0 1
2 1

p2q p̂2q̂ 1
4 (p̂2q̂ + 2p̂q̂p̂ + q̂p̂2) q̂p̂2

pq2 p̂q̂2 1
2 (p̂q̂2 + q̂2p̂) q̂2p̂

4
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For reasons to become clear later on, the elements of the Weyl algebra given by equation (3.3)
with m = n will be called radial. We list below a few radial elements of the lowest order in a
general μ-ordering:

Oμ(p2q2) = (1 − μ)2p̂2q̂2 + 2μ(1 − μ)p̂q̂2p̂ + μ2q̂2p̂2,

Oμ(p3q3) = (1 − μ)3p̂3q̂3 + 3μ(1 − μ)2p̂2q̂3p̂ + 3μ2(1 − μ)p̂q̂3p̂2 + μ3q̂3p̂3,

Oμ(p4q4) = (1 − μ)4p̂4q̂4 + 4μ(1 − μ)3p̂3q̂4p̂ + 6μ2(1 − μ)2p̂2q̂4p̂2

+ 4μ3(1 − μ)p̂q̂4p̂3 + μ4q̂4p̂4,

which give in the classical cases

Classical ordering of radial elements of degree � 8

0 1
2 1

pq p̂q̂ 1
2 (p̂q̂ + q̂p̂) q̂p̂

p2q2 p̂2q̂2 1
4 (p̂2q̂2 + 2p̂q̂2p̂ + q̂2p̂2) q̂2p̂2

p3q3 p̂3q̂3 1
8 (p̂3q̂3 + 3p̂2q̂3p̂ + 3p̂q̂3p̂2 + q̂3p̂3) q̂3p̂3

p4q4 p̂4q̂4 1
16 (p̂4q̂4 + 4p̂3q̂4p̂ + 6p̂2q̂4p̂2 + 4p̂q̂4p̂3 + q̂4p̂4) q̂4p̂4

It turns out that the coefficients appearing in the ordering formula (3.3) possess certain
combinatorial properties which, as will be shown later, are at the origin of certain actions of
the Lie algebra sl2 on the Weyl algebra W . These properties are best approached by means of
the following scheme which we have called an ‘inverted Pascal diagram’.

4. A construction and properties of inverted Pascal diagrams

In this section we discuss the recurrence

φn−1
k = φn

k + φn
k+1

for 0 � k � n, which arises in our main theorem, theorem 1, presented in detail in the
following section. The diagram

1
φ1

0 φ1
1

φ2
0 φ2

1 φ2
2

φ3
0 φ3

1 φ3
2 φ3

3

φ4
0 φ4

1 φ4
2 φ4

3 φ4
4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(4.1)

illustrates that this recurrence may be considered as a Pascal triangle in reverse— an attentive
reader notes that while in the Pascal triangle each entry is the sum of two entries immediately
above it, here it is the sum of two entries immediately below it. We call this structure an
inverted Pascal diagram. We have3

Lemma 1. The solution to the recurrence

φn−1
k = φn

k + φn
k+1 (4.2)

3 The following lemma and its proof were kindly communicated to us by an anonymous referee of the paper.
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with initial conditions φn
0 = αn, n � 0 is

φn
k =

k∑
i=0

(
k

i

)
(−1)k−iαn−i

for 0 � k � n.

Proof. Write

φn
k+1 = φn−1

k − φn
k .

Introducing the shift operators E+
k f (k) = f (k + 1), E−

n f (n) = f (n − 1), this becomes

E+
k φ = E−

n φ − φ = (E−
n − 1)φ.

Starting from φn
0 , iterating k times yields

φn
k = (E−

n − 1)kαn =
k∑

i=0

(
k

i

)
(−1)k−iαn−i

as stated. �

Of main interest in the present article, the sequence of initial values αn = (1 − μ)n yields
via the above result

φn
k = μk(1 − μ)n−k.

The coefficients used in (3.3) for the μ-ordering

βn
k =

(
n

k

)
φn

k =
(

n

k

)
μk(1 − μ)n−k

are the Bernstein basis polynomials, well known in interpolation theory [17].

5. sl2-triples and inverted Pascal diagrams

The μ-orderings considered above in (3.3) may be regarded as a specialization of a general
solution of an ordering problem

O(pmqn) =
m∑

k=0

βm
k p̂m−kq̂np̂k, (5.1)

where the coefficients βm
k satisfy for every m ∈ Z+ the normalization condition

∑m
k=0 βm

k = 1,
cf e.g. the paper of Bender and Dunne [3]. The elements O(pmqn) form a basis of the Weyl
algebra W , and by setting Wk = O(Vk) for k ∈ Z, we obtain the decomposition

W = ⊕
k∈Z

(Wk). (5.2)

Given any such ordering it is possible to construct a triple (R, L, E) of linear maps of the Weyl
algebra W which satisfy the sl2 commutation relations

[L, R] = E, [E, R] = 2R, [E, L] = −2L, (5.3)

and such that the ordering map O : P → W intertwines the actions of sl2 in the respective
spaces.

6
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We introduce these maps by declaring that on the basis obtained from monomials ordered
by (5.1) they are defined by

R[O(pmqn)] = O(pm+1qn+1) (5.4)

L[O(pmqn)] = mnO(pm−1qn−1) (5.5)

E[O(pmqn)] = (m + n + 1)O(pmqn) (5.6)

and extending the action to W by linearity. It is clear that relations (5.3) are indeed satisfied.
Let us observe that each of the subspaces W0 = O(V0),Wn = O(Vn),W−n = O(V−n),

will be invariant under the action of the triple (R, L, E) defined by (5.4)–(5.6). It follows that
the Weyl algebra W splits into the sum of sl2-modules

W = W0 ⊕
⊕
n∈N

(Wn ⊕ W−n) (5.7)

in full analogy with the decomposition of the polynomial algebra P(R2) in (2.5).
Let H denote the space of L-harmonic polynomials

H = O(K) = {w ∈ W | Lw = 0},
and let Hk = O(Kk) = H ∩ Wk . In analogy with (2.6) we have for the given ordering O the
following decomposition

Wk =
[k/2]∑
j=0

RjHk−2j .

It can be shown [10] that in general the space Hk is independent of the ordering O—for
μ-orderings it follows immediately from (5.8), and consequently that this decomposition
depends only on the ordering O through the operator R.

Let us now discuss the resulting representation of sl2 in the case of the μ-ordering. To
give explicit expressions for (R, L, E) we first recall that the adjoint action of the Weyl algebra
on itself is defined by

ad(w)v = [w, v], for v,w ∈ W.

For any w ∈ W the map ad(w) is a differentiation of the (associative) algebra W—in particular
ad(q̂)p̂n = inp̂n−1 and similarly ad(p̂)q̂n = −inq̂n−1. Moreover ad(q̂) and ad(p̂) commute
with each other,

ad(q̂) ad(p̂) = ad(p̂) ad(q̂).

By a straightforward computation it can be checked that the operator L defined by

L(w) = q̂p̂w − q̂wp̂ − p̂wq̂ + wp̂q̂ = ad(p̂) ◦ ad(q̂)(w), for w ∈ W, (5.8)

satisfies (5.5) and is, evidently, independent of μ. With the adjoint operators playing the role
of the differentiation, the operator L seems to be a natural generalization of the ‘Laplace’
operator L, cf (2.2).

It seems impossible in general to construct a linear map R of W into itself which will
satisfy condition (5.4) in a way independent of the choice of μ. However one can check that
given μ, the operator R defined as follows,

Rw = P̂ (μ)Q̂(μ)w = μ(1 − μ)q̂p̂w + μ2q̂wp̂ + (1 − μ)2p̂wq̂ + μ(1 − μ)wp̂q̂

has the required properties. We can also check that the following formula for E

E = −ip̂(μ) ad(q̂) + i ad(p̂)Q̂(μ),

defines an operator satisfying (5.6), cf [10, 11].

7
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The following theorem describes a larger class of orderings O for which the operator L

defined by (5.8) acts on elements O(pmqn) according to (5.5).

Theorem 1. Given the Weyl algebra W generated by a pair {p̂, q̂} satisfying (3.1) and given
a family of coefficients βm

k with m ∈ Z+, 0 � k � m satisfying the normalization condition∑m
k=0 βm

k = 1 for every m, define an ordering O : P(R2) �→ W by means of the formula

O(pmqn) =
m∑

k=0

βm
k p̂m−kq̂np̂k. (5.9)

For L : W �→ W given by

L = ad(p̂) ◦ ad(q̂)

the formula

LO(pmqn) = nmO(pm−1qn−1)

holds if and only if the coefficients βm
k for all m ∈ Z+, 0 � k � m are of the form βm

k = (
m

k

)
φm

k ,
with φm

k satisfying the recurrence relation

φm−1
k = φm

k + φm
k+1,

that is, φm
k forming an inverted Pascal diagram. If this condition is satisfied, we let

R : W → W be defined by

RO(pmqn) = O(pm+1qn+1), (5.10)

and set E : W → W to be

E = [L, R]. (5.11)

The maps R, L, E defined above satisfy the sl2 commutation relations and leave invariant each
of the subspaces Wk for k ∈ Z.

Proof. By the property of differentiation

ad(p̂) ◦ ad(q̂)(p̂l q̂np̂m) = n(lp̂l−1q̂n−1p̂m + mp̂lq̂n−1p̂m−1).

Now a straightforward calculation gives

LO(pmqn) = n

m−1∑
k=0

(
βm

k+1(k + 1) + βm
k (m − k)

)
p̂m−1−kq̂n−1p̂k, (5.12)

and for

βm
k =

(
m

k

)
φm

k (5.13)

the relation φm−1
k = φm

k + φm
k+1 implies that (5.5) holds. To prove that this relation is also

necessary it suffices to consider radial elements only, since the coefficients do not depend on
n. Now in this case the elements {p̂m−kq̂mp̂k} are linearly independent, thus comparing (5.12)
with the condition

LO(pmqm) = m2O(pm−1qm−1) = m2
m−1∑
k=0

βm−1
k p̂m−1−kq̂m−1p̂k,

we see that the coefficients βm
k satisfy

mβm−1
k = (k + 1)βm

k+1 + (m − k)βm
k .

8
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From (5.13) it follows in turn that φm
k satisfy the desired recurrence relation, and since the

normalization condition implies that φ0
0 = β0

0 = 1, the proof is completed. �

In the remaining part of the paper we shall detail, adapting to the present context methods
of [10, 11], the structure of the subspace W0 of radial elements for the case of μ-orderings. It
will be shown that it is in fact a commutative subalgebra of W , the algebra of polynomials in
the operator N = O(pq).

The basis {B(n)} of the space W0 of radial elements consists of weight vectors for the
action of sl2. It is obtained by successive applications of the operator R to the unit 1 of the
Weyl algebra,

B(n) = Rn(1)

and the action of sl2 is given by the familiar formulae

RB(n) = B(n + 1), LB(n) = n2B(n − 1), EB(n) = (2n + 1)B(n). (5.14)

For the case of μ-ordering a few first elements of this basis are

B(0) = 1,

B(1) = N = (1 − μ)p̂q̂ + μq̂p̂,

B(2) = N2 + (2μ − 1)iN − μ(1 − μ),

B(3) = N3 + 3(2μ − 1)iN2 + [3μ(1 − μ) − 2]N − 2μ(1 − μ)(2μ − 1)i,

and so on.
In fact it is not difficult to show that B(n) is a polynomial wn of degree n of the variable

N—this was observed earlier in the papers [2, 15, 18] with varied degree of generality as
concerns the applicable orderings. An inductive proof of this fact uses an observation that
R is obtained from left and right multiplications by q̂ and p̂ combined with the so-called
pull-through relations

p̂w(N) = w(N − i)p̂, q̂w(N) = w(N + i)q̂, (5.15)

which hold for arbitrary polynomial w(N).
To determine the precise form of the polynomials representing basis elements one has

to proceed with more care. To begin with, we adopt a convention which will enable us to
eliminate the imaginary unit ‘i’ from the final formulae, by setting iM = N,wn(it) = invn(t),
which gives

B(n) = wn(N) = wn(iM) = invn(M). (5.16)

The operators (L, R, E) are accordingly changed to L = −iL,R = −iR and E = −E. The
following proposition describes now the action of the triple (L,R, E) on polynomials in one
variable (denoted t for convenience).

Proposition 1. The difference operators on the algebra of polynomials of one variable t given
by

Xv(t) = 2
(
t +

(
1
2 − μ

))
v(t) (5.17)

Yv(t) = (t − μ)v(t − 1) (5.18)

Zv(t) = (t + (1 − μ))v(t + 1). (5.19)

satisfy the sl2 commutation relations

[X ,Y] = 2Y, [X ,Z] = −2Z, [Z,Y] = X . (5.20)

9
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The operators (L,R, E) can be expressed as their linear combinations as follows:

R = μ(1 − μ)X + (1 − μ)2Y + μ2Z (5.21)

L = X − Y − Z (5.22)

E = −(1 − 2μ)X + 2(1 − μ)Y − 2μZ. (5.23)

The proof is an easy, but long calculation based on definitions of the operators and pull-through
relations.

Remark 1. Using the classical notation for the forward and backward difference operators,
i.e.

�v(t) = v(t + 1) − v(t) ∇v(t) = v(t) − v(t − 1),

we can describe the action of the triple (L,R, E) as follows:

Rv(t) = μ2(t + (1 − μ))�v(t) − (1 − μ)2(t − μ)∇v(t) + tv(t)

Lv(t) = −(t + (1 − μ))�v(t) + (t − μ)∇v(t)

Ev(t) = −2μ(t + (1 − μ))�v(t) − 2(1 − μ)(t − μ)∇v(t) − v(t).

In this way we obtain the representation of the Lie algebra in difference operators which can
be compared to well-known realizations of this structure in differential operators.

Now observe that the combination μ(1 − μ)L + R +
(
μ − 1

2

)
E is proportional to X and

acts on polynomials in t as the multiplication by t +
(

1
2 −μ

)
1. Together with (5.14) and (5.16)

this leads to the following result.

Proposition 2. Let the basis elements B(n) be expressed by polynomials vn of degree n in the
variable M = −iN according toB(n) = invn(M). Then the polynomials vn(M) are determined
by the following second-order recurrence formula,

vn+1(M) − [M + n(2μ − 1)]vn(M) − μ(1 − μ)n2vn−1(M) = 0, (5.24)

together with the initial conditions v−1(M) = 0, v0(M) = 1 and can be written in terms of
the hypergeometric function 2F1 as follows,

vn(M) = (−1)nn!(1 − μ)n2F1

(
M + (1 − μ),−n, 1; 1

1 − μ

)
. (5.25)

The proof of (5.25) based on the contiguous relation for the hypergeometric function
(equations (2.5.16) in [1]) can be found in [10, 11].

For the case of μ = 1
2 , which corresponds to the Weyl ordering, the right-hand side of

(5.25) shows that the polynomials vn(iN) coincide up to a normalization with the Meixner–
Pollaczek polynomials P

1/2
n (N, π/2), cf [1, p 348] and [14, (1.7.1)], as pointed out in [15]. For

more details on relations between Meixner–Pollaczek and other classes of hypergeometric-
type orthogonal polynomials and representations of the Lie algebra sl2 the reader is referred
to a comprehensive discussion of that topic in [7].
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